LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’'s Research and Development
Reports to business, industry, the
academic community, and federal,
state anc! local governments.

Altnough a small portion of this
report is not reproducble, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-UR -89-2706

DEB9 016769

LA-UR--89-2706

.08 Alamos Nauonal Labaratory .8 operated by the Unwversily of Calilormia for (he United Siates Department of Energy under conract W-7405 ENG 16

TITLE An Inteprated Distributed Processing interface
lor Supercomputers and Workstat fons

AUTHOR(S) Johin K. Campbell]l and Lauren P. MeGavran

SUBMITTED TO ASE HY
Applications ol Supercomputers in Enpineering
Southampron U'niversity, United Kingdomr
Septoember o = 7, [YR)

DISCLAIMER

I report wan prepured as an scoount of wirk spunmred hy an agency of the imited States
Growernment Newlher the United States Government nae any agency thereol, ew sny of therr
emplovers. mikes any warranty, capress or impled, or asaumes any legal lability o reapinu
hiity for the acvuracy, completenes, = usefulness of any iInfarmatnn, sjperaius, product, or
prnea deckmed. of represents that v use woukl mot inininge privately owaed nghiv Refer
ere herein to apy spevifn commerosl prsfuct, primess oF wivice by trsde namie, trsdeman -,
manufacturer o otherwie dor ml aevessanly cmstitule or imply 1y endersement. recom
memdatun. o favoning by the Uinited States (overnment or any agemy theieod The views
andd opensoms of suthors eapreveed herein i ot nevesaanily state or reflect thime o0 the
Uiniled Siales Ciavernment o0 any agem y therend

H (< N /A\\ (b ; ” W«))(c Y Los Aliimos National Laboratory
1 (

TR e

w2 Los Aliimos.New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

An Integrated Distributed
Processing Interface for
Supercomputers and Workstations

John Campbell and Lauren McGavran

L.os Aliimos National Laboratory
Computer Research and Applications
L.os Alamos, New Mexico 87544

United States of America
Abstract

Access te documentation. communication between multiple processes
runming on heterogeneous computers. and ammation of simulations of
cngineering problems are tvpically weak in most supercomputer
environmenis This presentation will describe how we are improving this
sttnatton i the Computer Research and Apphications group at Los Alamos
Nanonal Laboratory

We huve developed o tool using UNIN tilters and o SunView intertace th
Allows users sunple access 1o documentation vii mouse driven menus. We
vane also aeveloped o distributed apphiciation that integrates a two point
boundiny value problem on one ot our Crav - Supercomputers. [t s
controlled amd chisplaved graphically: by a window mtertace running on a
worhstanon Fmallyv, we will desertbe sottware to ammate results on the
wortkstatton soreen Oue motvation tor ths research has beea o improve
the usual ivpesnter/statie ntertace using binguage independent controls
to show capabihties ot the workstation ~supercomputer combimation

Introduction

\the Do Namos Navonal Taborgtorny, we have cvast arin of compatng
havdwarel bl Winle s hardware presents . omcredible potential 1o the
neay soentets nathematie s, and engmeers who gae o facilines, o
Al presenis specal problems o ey of anterconnedtions between the
vations compaters and asape of ome tactlities Because ot the number of
ditterent compater langigres and operating systems o s ditfieade for om

users to control the tlow of information in their applications. Compounding
these difficulties are the different languages used in our various disciplines.

We are continually contronted by hardware and software that is either too
simplistic for a given application, or that 1s language bound (i.e. its effective
use is inhibited by voluminous verbiage). An example of this language
barrier is *he documentation we have all faced when presented with new
capabilities. Volumes of instruction manuals d» not compensate for simple
pictorial examples of available tools and their interrelationships| 2.

Another proplem we all face is our access o tools like the SLATEC|3]
math library. This librarv is composed of several thousand routines by
many authors and each author uses his own terminology for common
objects like dependent variables, work arrays, and so forth. The reference
manual explaining each author’s temms for these objects 15 usually
contained in a separate compendium. What we really want to have is an on-
Ime hierarchical documentation tool that would allow us o search for
appropriate programs tor the task at hand and give us examples of each
toutme s usiage. We would like this search to occur with 4 minimum of
tvpmg, and without having to leam the documentation tool syntax in
addinon o the variable notiation of the math tool.

Atter deciphering the math tool semamic: o get us to our goal, we want to
connect our computers synergisticallv, In the case of trying to solve partial
differential equations. for example. the workstation should be used for the
user mtertace and not o antegrate the pde’s. Similarly, the supercorputer
should be used to imtegrate the pde’s and not be concemed with the details
of the user mtertace. By communicating between processes running on
cach, we are able 1o achieve the compute power of the supercomputer
controlled by a triendly interface possible with most modem workstations.

Havimg overcome the semantic difficulties and distributed the processes to
heterogencous computers, we want to use the full capability of our
warthstation to control the problem’s parameters We want to use analog
e contiols, color, three dimensional representations. and animation o
i nsieht into our - problems. Only then can we apply our tull mtuition o
the interpretation of the numencal madels

Phus paper desenibes how we have demonstiated these concepts
pracucal applicanons

| ANTUL

Tool Access

DOC is a program written in the C programming language that implements
. mouse to exrract documentation for a particular subroutine from a library
o mathematical software. It is foolproof in the sense that its user has only
1o select from o series of menus. These menus are activated by pushing
buttons with the name of the particular library, such as SLATEC. This
“mouse chick” activates a menu of the names of categories contained in that
library. When the mouse 1s moved to the right of a particular category, its
corresponding subcategory menu pops up. Activating the subcategory’s
pullright menu causes s corresponding subroutine menu to pop up.
Selection of a particular reutine by clicking the mouse over the name of that
routme causes 1ts description to appear in a section or the window that can
he eastly scrolled up and down. Thus the user of DOC has a simple,
tesponsive method for understanding the appropriate usage for rourines in
that hibrary

The way that DOC works is that the menus for the category, subcategory
and routine menus are built using the "awk” Unix filter{4]. The category
ad subcategory menus are built when DOC 15 started. and the routine
menu is built “on the f1v? That s, the contents of the routine menu is
renerited according 10 what has been selected from the first two menus.
Fhe program works by starting up processes at the appropriate times 1o
veld tounme mames tor what s selected trom the previous menu nems.

Fhe ek tor extracting the appropriate toutine description guickly s
random access 1o the tile that contams the descriptions of all the routines
the hibrary The “tad” Unua filter s used to go directly to the starting byte
iocation or the routine chosen and the “extract” shell script, which contains
Lol extracts the documentation tor the routine selected by the user

he “exttact” shell senpre gequires that the documentation file contining
documentation tor all the 1toutines be preprocessed into a linked list ot
subrtoutine names. tollowed by a startmge byvte locanon and the number ot
hnes of documentation per toutine. Although this sounds complicated, it s
casty accomphished with a0 3 hine shell senipt that also rehes on the “awh”
U'nix tiltes

DO pousetul moselt and s an examiple ot how the power and flexihiliny of
Uiy e can be antegrated anto programs and window g mtertaces This
could e overy usetul e numencal amilvsis where we otten need to sort o

Pape

filter our dara and pass the results tfrom one process to another in as simple
amanner as possible.

DOC does simple interprocess communication but the Berkeley version of
UmixS] has o concise and efficient means of communicating between
multiple processes running on the same or different CPUs. The interprocess
communication or PC tools allow us to share memory and exchange
messiages between processes. and to synchronize processes through
semiaphores. Thus, in the particular example of DOC. the latency time of
several seconds needed to start up the process that generates the
subroutine menu could be improved by having a separate program running.
This separate program would generate the category and subcategory
menus and then go into a wart state unnl a signal was passed asking 1t to
withe up It wouid then read the message stack to determine what set of
menu tems the user had selected. Finally it would generate the
appropriate subroutine names and leave these on the menu stack of
messiges agped o keep the communications straight and go back to
sleep When the appropriate semaphore was set indicating that it was
done. the window managing program would read the message stack for
appropriately tagped wems and activate the correct menu for the user to
hoose trom

Use of IPCs i numencal analvsis has vet 10 be exploited even though
there are many areas whers multiple processes could improve simulations.
Fyven dess uuhized noapplication research is distributed processing, which
we desertbe next Distributed processing means using multiple processes
sl to IPCS bae sphts them among heterogeneous computers
connected by oan Ethemet or bus connection to take advantage of special
hardware such as vector registers and 3 dimensional geometry engines.

Distributed Processing

supercomputers and workstiations can be coupled svnergistically so that
we have the compute power of the supercomputer controlled by a smart
miertace Amlop controls sach as buttons and shiders give users prompt
feedback freemyg then imagmatnon and mtuttion tor their basic problems as
npposed o the iimpmisties of how to attam the mtonnanon they desie

There are thiee wins ot distibutmg processes between computers . The
most recognizable o those who program e Fortan v the Remuote
Procedoie Call or RPC Ulaing RPC 000 server program s statted on the
remote machine Then the sobrounmes i that progam can be called from g

client program running on the local machine as if the routines in the remote
file were linked into the client.

It the rwo computers have different internal byte representations tor floats,
integers, and other variable types. they must be interpreted so that each
machine reters to the same numerical value for the same variable. The most
common technique for this data correction is the external data
representation or XDR. Using XDR's. the variables are interpreted in
IEEE standard format before they are sent over the network to the other
computer. At the receiving end the data is then deciphered in the native
byte representation of that computer.

RPCODFE is an example of the use of a workstation coupled 10
supercomputer. 1t uses a supercomputer o integrate the ordinary
differential equation (ODE) shown below between twao boundary values
viett and vnght:

eps Ve Xy -y =0

Once the server and client are running and connected. the solution to this
cquation 1y retumed whenever the user adjusts the vleft. vright. or eps
sliders. These sliders are in a control panel subwindow within a window
that also contains a canvas subwindow. When the endpomnts of the vectors
tat represent the solution are retumed the solution is drawn in the canvis
subwindow

The RPCs descenbed above allow us to do remote executton between
computers using tamiliar concepts (i.e. the procedure call). RPC's are buili
on 1op of another Unix ool known as sockets. Sockets are the basis for
mame servers, file servers, fip. ete. They are endpoints of communication
between processes. They allow processes to communicare over ports: the
processes can be on different machines or on the same machime Thus
communication paths mav be controlled by sottware. This method of
commumcation also allows G user to Uselect” ona pariculin process/pon
number What select means s that the 1ead o1 write trom one process can
determune of the corresponding write/tead on the other process s ready to
send orreceve dati

he selecr sy teme call s passed a it mask that s composed of “on™ bits
for the open tile desenprors, and st retams o bie sk that cepresents the
sochet descnprors that e wamitmpg to complete ther o Thus processes on
ditterent computers may be muluplexed e an ethicient way of controlling

Pave &

communication by software. There are several tvpes of sockets but the
most imporntam for applications are the user datagram protocol (UDP) and
the transmission control protocol (TCP).

UDP sockets vse minimal overhead and are fast but unreliable. whereas
TCP sockets guarantee that information sent will arrive and be in the right
order independent of the physical route taken. Sockets can also send data
out of band (O0B). OOB data may be signals. interrupts. synchronization
pirameters, and so forth. OOB data shows up as fast as possible,
independent of the state of other data being sent over a socket descriptor.

To use sockets one must leam about intemet addresses and how the C
programming language handles i/o (which is usually more complicated than
Fortran /o). A simpler mechanism for getting trom & process on one
machine 10 a process on another machine is the REXEC. REXEC is a
svstem call that starts up a process on a remote machine from a C program
ninnig o a local machine and connects the standard input and output of
the remote proces- to the socket descripror retumed by the REXEC call.

The simplicity and small wnount of code needed for doing RPC's, IPC's,
and REXEC's means code can be modular and flexible and therefore the
minimal sottwire tor a given functionality. This is one of the most important
features of Unix. The motvation for this breviry is that Unix was originally
developed on a teletvpe Stll minmal verbiage/code to do what one wants
to do, and features like name hiding (available in all window systems)
allow us 10 make our programs more flexible and structured. Numerical
aalvsis can also be advanced by concepts analogous to Unix handles files
andd processes. Processes have life. That is they come into existence, have
then awn separate nstruction set separate from other processes, and run
mdependently ot other processes. Similarty files have position and space.
Although a file mav reside on many different disks, it has a simple logical
mune/mode address so it may be reterred to as a contiguous entity. Unix
acomphishes this homogeneny by using the powertul concept ot
porers| S|

Animation

Fast computers should aiso be able to praduce fast images. Ammation can
help prve us msight mto the tme dependent aspects of om problems
However, anmation 1o otten very difticalt. This dhitficulty s because domg
things quickly i Unix otten means leaming how the kemel controls the flow
ot intormanon, which drops us to the deviee anver level of sottwine

Many of us have generated film wnages of mathematics/engineering to
show eon a movie projector. Projectors generally run at 24 frames/second so
the interpolation to get real time is a simple algebraic problem. This method
is not interactive since we must wait for the film to be developed to see
what we 've generated.

We can do a more controtlable animation on raster based workstations
because of their refresh capability. Motion can be produced by writing
successive images into memory and copying these images from memory to
the screen using the polling function. We have produced software to make a
sine wiave move across the screen in this way. Frequency and amplitude
are comtrolled by sliders that change the appropriate images in memory
when they are adjusted by the user. The lines that represent the sine wave
are drawn into their corresponding memory locations and another procedure
that copies these images to the screen is called as often as possible using
the polling function. Thus the sine ‘vave appears to move across the
window

This torm of anumation is limited to rectangular regions of the screen
because of the memory to screen mapping software. True random pixel
access can be achieved by opening the workstation’s frame buffer device
driver, allocating virtual memory using VALLOC. and mapping a variable to
that memory representing the screen memory using MMAP. Then as the
vartable is changed. corresponding pixel locations are changed. There are
no reads or writes and so screen changes happen at memory rates

Conclusion

In conclusion. we have shown how IPC’s, distributed processing. and Unix
filters can miake numerical analvsis more productive. In the future we hope
to use an object oriented Lnguage like C++ [6] to make libraries that
simplity: communication and svnchronization of processes so everyone does
not have 1o leam the lowest level communications in order to do his
mathematics on heterogeneous machinery connected by either Ethemet or
high speed buses Iastributed operating systems like DUNIX [7] will play
an - mereasingly mportant role in making distributed processing more
Linguage transparent and visual programming control environments ik
VOUS (K] wdl maprove the tong leaming curve now necessary in our varied
programming environment

W centually hope to solve problems ke fluid mechanics on distributed
pro o essors fast enough 1o be able to show evolutionary trends. Using the

Page /

techniques described in this paper we can potentially solve coupled partial
differential equations by distributing the individual equations solvars to
separate CPU’s. Shared boundary can be communicated at a sustained
nominal rate of 1 megabit/sec. and synchronization signals can be passed
around so that one computer controls all the integration and communication
activity. Ir order to make the data recognizable we can send the dat. to yet
another processor that is taking the physical variables, such as pressure
and the 3 components of velocity. and doing further mathematical
processing to produce information in a form that may be assimilated into a
hardware graphics engine capable of rendering the visual images in real
time.

This hardware has the capability 1o render 3 dimensional surfaces anc
rotate them quickly using a knob box. Therefore, in the near future we hope
to be able to recogmze where our numerics need more resolution oy
customized representations of derived quantities such us the divergeace
and vorticity of a flow.

By appropriate communication between computers and pecple we can
achieve many interesting applications with the hardware tools becoming
available at an ever increasing rate. Without this communication. however,
we will continue to run nothing more innovative than benchmark routines on
computers with speeds approaching 100 megaflops or pictures of teapots
on high powered graphics engines capable of rendering variably transparent
d-dimensional surtfaces with light sources in rezl time.

REFERENCES

I Sander. Janet and Gamet, Ann. Computing and Comniunications Division
News, July 1089,

2 Mckim. Robert H., Thinking Visually. A Strategy Manual for Problem
Solving, Litetime Leamming Publications. Beaumont, Califomia, 1980

1 Buzzbee. Bill i.. "The SLATEC Common Math Library” in Sources and
Development of Mathematical Software. W Cowl, Bed.. Prentice-Hall
Senes in Computational Mathemanes.

4 Remighan, Brian W And Pike, Rob. The UNINX Programming
Eonvaonment, Peentice Hall, tne., Englewoad Cliffs. New lersev, [OR4,

Pape &

5 Bach, Maurice J.. The Design of the UNIX Operating System, Prentice-
Hall Software Series. New Jersey, 1986.

6 Stroustrap, Bjame. The C++ Programming Language. Addison-Wesley
Publishing Company. Menlo Park, California, 1987.

7 Litman, Ami. The DUNIX Distributed Operating System. Bell
Communications Research

8 Oliger. Joseph, Pichumani. Ramani. and Ponceleon, Dulce. A Visual
Object-Oriented Unification System. Stanford University Manuscript
CLaSSiC-89-23, 1989.

Page @

